Skip to Main Content

Download as PDF

DBIO-PHD - Developmental Biology (PhD)

Overview

Program Overview

A fundamental problem in biology is how the complex set of multicellular structures that characterize an adult animal is generated from the fertilized egg. Recent advances at the molecular level, particularly with respect to the genetic control of development, have been explosive. These advances represent the beginning of a major movement in the biological sciences toward the understanding of the molecular mechanisms underlying developmental decisions and the resulting morphogenetic processes. This new thrust in developmental biology derives from the extraordinary methodological advances of the past decade in molecular genetics, immunology, and biochemistry. However, it also derives from groundwork laid by the classical developmental studies, the rapid advances in cell biology and animal virology, and from models borrowed from prokaryotic systems. Increasingly, the work is directly related to human diseases, including oncogene function and inherited genetic disease.

The department is located in the Beckman Center for Molecular and Genetic Medicine within the Stanford University Medical Center.

Director of Graduate Studies

David Kingsley

Free Form Requisites

Doctor of Philosophy in Developmental Biology

University requirements for the Ph.D. are described in the Graduate Degrees section of this bulletin.

The graduate program in Developmental Biology leads to the Ph.D. degree. The department also participates in the Medical Scientists Training Program (MSTP) in which individuals are candidates for both the M.D. and Ph.D. degrees.

Course List

Units

Students are required to complete at least five courses, including:

course

Developmental Biology

4

course

Frontiers in Biological Research (1 unit per quarter; students are required to take at least two quarters)

2

An advanced graduate course in genetics or genomics;

An advanced graduate course in cell biology or biochemistry;

A course in quantitative or computational biology.

Students are expected to attend Developmental Biology seminars and journal clubs.

 Completion of a qualifying examination is required for admission to Ph.D. candidacy. The examination consists an off-topic proposal on a subject different from the dissertation research. The final requirements of the program include presentation of a PhD dissertation as the result of independent investigation and constituting a contribution to knowledge in the area of developmental biology. The student must pass the University oral examination, taken only after the student has substantially completed research. The examination is preceded by a public seminar in which the research is presented by the candidate. The oral examination is conducted by a dissertation reading committee.

Program Policies

Advising Expectations

The Department of Developmental Biology is committed to providing academic advising in support of graduate student scholarly and professional development. When most effective, this advising relationship entails collaborative and sustained engagement by both the advisor and the advisee. As a best practice, advising expectations should be periodically discussed and reviewed to ensure mutual understanding. Both the advisor and the advisee are expected to maintain professionalism and integrity.

Faculty advisors guide students in key areas such as selecting courses, designing and conducting research, developing of teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways.

Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program.

For a statement of University policy on graduate advising, see the Graduate Advising section of this bulletin.

Learning Outcomes

Program Learning Outcomes

The Department of Developmental Biology includes a critical mass of scientists who are leading the thrust in developmental biology and who can train new leaders in the attack on the fundamental problems of development. Department labs work on a wide variety of organisms from microbes to worms, flies, and mice. The dramatic evolutionary conservation of genes that regulate development makes the comparative approach of the research particularly effective. Scientists in the department labs have a very high level of interaction and collaboration. The discipline of developmental biology draws on biochemistry, cell biology, genetics, molecular biology, and genomics. People in the department have a major interest in regenerative medicine and stem cell biology.