Empirical Likelihood

Download as PDF

Course Description

Empirical likelihood (EL) allows likelihood based inferences without assuming any parametric form for the likelihood. It is based instead on reweighting the sample values. It provides data driven shapes for confidence regions and confidence bands. EL tests have competitive power. EL has recently been used in causal inference, reinforcement learning and distributionally robust inference. This course covers: nonparametric maximum likelihood and likelihood ratios, censoring and truncation, biased sampling, estimating equations, GMM, Bayesian bootstrap, Euclidean and Kullback-Leibler log likelihoods and recent research directions.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Programs

STATS365 is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )