Wildfire Science
Download as PDF
Course Description
Wildfires are unplanned fires that burn in natural areas, such as forests, grasslands, shrublands, and other environments such as wildland-urban interface. While wildfires have been a natural part of our ecosystem, they can threaten livelihood and properties and impact environment and health. The severity and frequency of large wildfires in the United States have increased significantly over the past decades. This is largely attributed to human-caused climate change, increased human population in wildland-urban interface, and changes in fire-management policy. This surge in wildfire activity has resulted in substantial increase in burn area, pollutant and smoke emissions, and associated health effects. This course introduces students to the science of wildland fires, with a specific focus on the physics and quantitative understanding of wildfire behavior, environment impact, and fire management. Starting with the fundamentals of combustion and heat transfer, we will examine effects of wildfire behavior, fire propagation and the transition to extreme-fire events that are driven by atmospheric interaction. The second part of this course is concerned with the modeling and prediction of wildfires. To address deficiencies in the detailed understanding of fire-physics, we will examine recent developments of data-driven methods and their use for fuels characterization, fire detection, fire-risk assessment, and fire behavior predictions. As part of a series of homework assignments and projects, students will have the opportunity to analyze observational data, develop physical models, and examine different wildfire scenarios.
Grading Basis
RLT - Letter (ABCD/NP)
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No