Applied Causal Inference with Machine Learning and AI
Download as PDF
Course Description
Fundamentals of modern applied causal inference. Basic principles of causal inference and machine learning and how the two can be combined in practice to deliver causal insights and policy implications in real world datasets, allowing for high-dimensionality and flexible estimation. Lectures will provide foundations of these new methodologies and the course assignments will involve real world data (from social science, tech industry and healthcare applications) and synthetic data analysis based on these methodologies. Prerequisites: basic knowledge of probability and statistics. Recommended: 226 or equivalent.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Programs
MS&E228
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )