Deep Reinforcement Learning

Download as PDF

Course Description

Humans, animals, and robots faced with the world must make decisions and take actions in the world. Moreover, the decisions they choose affect the world they exist in - and those outcomes must be taken into account. This course is about algorithms for deep reinforcement learning - methods for learning behavior from experience, with a focus on practical algorithms that use deep neural networks to learn behavior from high-dimensional observations. Topics will include methods for learning from demonstrations, both model-based and model-free deep RL methods, methods for learning from offline datasets, and more advanced techniques for learning multiple tasks such as goal-conditioned RL, meta-RL, and unsupervised skill discovery. These methods will be instantiated with examples from domains with high-dimensional state and action spaces, such as robotics, visual navigation, and control. This course is complementary to CS234, which neither being a pre-requisite for the other. In comparison to CS234, this course will have a more applied and deep learning focus and an emphasis on use-cases in robotics and motor control.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Programs

CS224R is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )