Practical Machine Learning

Download as PDF

Course Description

Applying Machine Learning (ML) to solve real problems accurately and robustly requires more than just training the latest ML model. First, you will learn practical techniques to deal with data. This matters since real data is often not independently and identically distributed. It includes detecting covariate, concept, and label shifts, and modeling dependent random variables such as the ones in time series and graphs. Next, you will learn how to efficiently train ML models, such as tuning hyper-parameters, model combination, and transfer learning. Last, you will learn about fairness and model explainability, and how to efficiently deploy models. This class will teach both statistics, algorithms and code implementations. Homeworks and the final project emphasize solving real problems. Prerequisites: Python programing and machine learning (CS 229), basic statistics. Please view course website here: https://c.d2l.ai/stanford-cs329p/

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

4

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Does this course satisfy the University Language Requirement?

No

Programs

CS329P is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )