Neural Models for 3D Geometry
Download as PDF
Course Description
Course Description: Generation of high-quality 3D models and scenes by leveraging machine learning tools and approaches. Survey of geometry representations. Public 3D object and scene data sets. Neural architectures for geometry, including deep architectures for point clouds and meshes. Generative models for 3D: autoencoders, GANs, neural implicits, neural ODEs, autoregressive models. Conditional generation based on images or partial geometry. Variation generation. Evaluation metrics for content generation. Use of synthetic data in ML training pipelines. Prerequisites: CS148 and the rudiments of deep learning. Recommended: CS229.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
CS348N
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )