Counting and Sampling

Download as PDF

Course Description

This course will cover various algorithm design techniques for two intimately connected class of problems: sampling from complex probability distributions and counting combinatorial structures. A large part of the course will cover Markov Chain Monte Carlo techniques: coupling, stationary times, canonical paths, Poincare and log-Sobolev inequalities. Other topics include correlation decay in spin systems, variational techniques, holographic algorithms, and polynomial interpolation-based counting. Prerequisites: CS161 or equivalent, STAT116 or equivalent.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Programs

CS263 is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )