Mathematical problems in Machine Learning
Download as PDF
Course Description
Mathematical tools to understand modern machine learning systems. Generalization in machine learning, the classical view: uniform convergence, Radamacher complexity. Generalization from stability. Implicit (algorithmic) regularization. Infinite-dimensional models: reproducing kernel Hilbert spaces. Random features approximations to kernel methods. Connections to neural networks, and neural tangent kernel. Nonparametric regression. Asymptotic behavior of wide neural networks. Properties of convolutionalnetworks. Prerequisites: EE364A or equivalent; Stat310A or equivalent.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Programs
STATS375
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )