Evolution of Terrestrial Planets

Download as PDF

Course Description

Despite forming in the inner solar system from broadly similar starting materials, Mercury, Venus, Earth, Mars, and the Moon each represent a unique outcome of the planetary formation process. Processes occurring deep inside planets drive the evolution of planetary crusts and atmospheres, which both control planetary habitability. This course explores how geophysical approaches such as gravity, topography, seismology, heat flow, and magnetism provide insight into the thermal and chemical histories of each rocky world. We cover how planetary scientists study ancient processes such as core formation, impact cratering, magnetic field generation, mantle convection, and tectonics by a combination of spacecraft measurements, modeling, and laboratory analyses of extraterrestrial materials. Recommended prerequisites: PHYSICS 41, 43, and MATH 51 or CME 100, or instructor consent.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Programs

GEOPHYS237 is a completion requirement for: