Deep Multi-task and Meta Learning
Download as PDF
Course Description
While deep learning has achieved remarkable success in supervised and reinforcement learning problems, such as image classification, speech recognition, and game playing, these models are, to a large degree, specialized for the single task they are trained for. This course will cover the setting where there are multiple tasks to be solved, and study how the structure arising from multiple tasks can be leveraged to learn more efficiently or effectively. This includes: goal-conditioned reinforcement learning techniques that leverage the structure of the provided goal space to learn many tasks significantly faster; meta-learning methods that aim to learn efficient learning algorithms that can learn new tasks quickly; curriculum and lifelong learning, where the problem requires learning a sequence of tasks, leveraging their shared structure to enable knowledge transfer. This is a graduate-level course. By the end of the course, students should be able to understand and implement the state-of-the-art multi-task learning algorithms and be ready to conduct research on these topics. Prerequisites: CS 229 or equivalent. Familiarity with deep learning, reinforcement learning, and machine learning is assumed.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
CS330
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )