Principles of Robot Autonomy II

Download as PDF

Course Description

This course teaches advanced principles for endowing mobile autonomous robots with capabilities to autonomously learn new skills and to physically interact with the environment and with humans. It also provides an overview of different robot system architectures. Concepts that will be covered in the course are: Reinforcement Learning and its relationship to optimal control, contact and dynamics models for prehensile and non-prehensile robot manipulation, imitation learning and human intent inference, as well as different system architectures and their verification. Students will earn the theoretical foundations for these concepts and implement them on mobile manipulation platforms. In homeworks, the Robot Operating System (ROS) will be used extensively for demonstrations and hands-on activities. Prerequisites: CS106A or equivalent, CME 100 or equivalent (for linear algebra), CME 106 or equivalent (for probability theory), and AA 171/274.

Cross Listed Courses

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

4

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Does this course satisfy the University Language Requirement?

No

Programs

CS237B is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )