Advanced Survey of Reinforcement Learning

Download as PDF

Course Description

This class will provide a core overview of essential topics and new research frontiers in reinforcement learning. Planned topics include: model free and model based reinforcement learning, policy search, Monte Carlo Tree Search planning methods, off policy evaluation, exploration, imitation learning, temporal abstraction/hierarchical approaches, safety and risk sensitivity, human-in-the-loop RL, inverse reinforcement learning, learning to communicate, and insights from human learning. Students are expected to create an original research paper on a related topic. Prerequisites: CS 221 or AA 238/CS 238 or CS 234 or CS 229 or similar experience.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Programs

CS332 is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )
  • (from the following course set: )