Hypersonic Aerothermodynamics
Download as PDF
Course Description
History of hypersonic flight technology. Inviscid hypersonic flows. Rankine-Hugoniot shock-jump relations at high Mach numbers. Newtonian approximation. Small-disturbance equations for hypersonic aerodynamics. Mach-number independence. Hypersonic similarity. Hypersonic boundary layers and viscous interactions. Aerodynamic heating. Self-similar solutions and analogies. Shock-shock interactions and shock-interference heating. Reentry aerothermodynamics. Effects of the entropy layer. Ablation shields. Thermodynamic and chemical nonequilibrium effects in hypersonics. Transition in hypersonic boundary layers. Effects of incident shock waves. Modern computational developments in hypersonics. Engineering applications of hypersonics in aeronautics and astronautics.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No