Reinforcement Learning
Download as PDF
Course Description
To realize the dreams and impact of AI requires autonomous systems that learn to make good decisions. Reinforcement learning is one powerful paradigm for doing so, and it is relevant to an enormous range of tasks, including robotics, game playing, consumer modeling and healthcare. This class will briefly cover background on Markov decision processes and reinforcement learning, before focusing on some of the central problems, including scaling up to large domains and the exploration challenge. One key tool for tackling complex RL domains is deep learning and this class will include at least one homework on deep reinforcement learning. Prerequisites: proficiency in python, CS 229 or equivalents or permission of the instructor; linear algebra, basic probability.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Discussion
Enrollment Optional?
Yes
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
CS234
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )