Data Science 101
Download as PDF
Course Description
This course will provide a hands-on introduction to statistics and data science. Students will engage with fundamental ideas in inferential and computational thinking. Each week consists of three lectures and two labs, in which students will manipulate real-world data and learn about statistical and computational tools. Topics covered include introductions to data visualization techniques, summary statistics, regression, prediction, sampling variability, statistical testing, inference, and replicability. The objectives of this course are to have students (1) be able to connect data to underlying phenomena and think critically about conclusions drawn from data analysis, and (2) be knowledgeable about how to carry out their own data analysis later. Some statistical background or programming experience is helpful, but not required. The class will start with a brief introduction to R but will move at a relatively fast pace. Freshmen and sophomores interested in data science, computing, and statistics are encouraged to attend. Also open to graduate students.
Grading Basis
ROP - Letter or Credit/No Credit
Min
5
Max
5
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
This course has been approved for the following WAYS
Applied Quantitative Reasoning (AQR)
Does this course satisfy the University Language Requirement?
No
Courses
STATS101
is a
prerequisite
for:
Programs
STATS101
is a
completion requirement
for: