Computational Imaging
Download as PDF
Course Description
Digital photography and basic image processing, convolutional neural networks for image processing, denoising, deconvolution, single pixel imaging, inverse problems in imaging, proximal gradient methods, introduction to wave optics, time-of-flight imaging, end-to-end optimization of optics and imaging processing. Emphasis is on applied image processing and solving inverse problems using classic algorithms, formal optimization, and modern artificial intelligence techniques. Students learn to apply material by implementing and investigating image processing algorithms in Python. Term project. Recommended: EE261, EE263, EE278.
Cross Listed Courses
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
EE367
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )