Advanced Topics in Sequential Decision Making
Download as PDF
Course Description
Survey of recent research advances in intelligent decision making for dynamic environments from a computational perspective. Efficient algorithms for single and multiagent planning in situations where a model of the environment may or may not be known. Partially observable Markov decision processes, approximate dynamic programming, and reinforcement learning. New approaches for overcoming challenges in generalization from experience, exploration of the environment, and model representation so that these methods can scale to real problems in a variety of domains including aerospace, air traffic control, and robotics. Students are expected to produce an original research paper on a relevant topic. Prerequisites: AA 228/CS 238 or CS 221.
Cross Listed Courses
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
4
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
CS239
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )