Topic: Monte Carlo
Download as PDF
Course Description
Random numbers and vectors: inversion, acceptance-rejection, copulas. Variance reduction: antithetics, stratification, control variates, importance sampling. MCMC: Markov chains, detailed balance, Metropolis-Hastings, random walk Metropolis,nnindependence sampler, Gibbs sampling, slice sampler, hybrids of Gibbs and Metropolis, tempering. Sequential Monte Carlo. Quasi-Monte Carlo. Randomized quasi-Monte Carlo. Examples, problems and motivation from Bayesian statistics,nnmachine learning, computational finance and graphics. May be repeat for credit.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Programs
STATS362
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )