Advanced Dynamics, Simulation & Control
Download as PDF
Course Description
Advanced methods and computational tools for the efficient formulation of equations of motion for multibody systems. D'Alembert principle. Power, work, and energy. Kane's and Lagrange's method. Computed torque control. Systems with constraints. Quaternions. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the behavior of multiple degree of freedom systems. Team-based computational multi-body lab project (inclusion of feed-forward control optional).
Grading Basis
RLT - Letter (ABCD/NP)
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Programs
ME331B
is a
completion requirement
for: