Applied Statistics III
Download as PDF
Course Description
Methods for multivariate responses. Theory, computation, and practice for multivariate statistical tools. Topics may include multivariate Gaussian models, probabilistic graphical models, MCMC and variational Bayesian inference, dimensionality reduction, principal components, factor analysis, independent components analysis, canonical correlations, linear discriminant analysis, hierarchical clustering, bi-clustering, multidimensional scaling and variants (e.g., Isomap, spectral clustering, t-SNE), matrix completion, topic modeling, and state space models. Extensive work with data involving programming, ideally in Python and/or R. Prerequisites: Stats 305A and Stats 305B or consent of the instructor.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
STATS305C
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )