Stochastic Simulation

Download as PDF

Course Description

Emphasis is on the theoretical foundations of simulation methodology. Generation of uniform and non-uniform random variables. Discrete-event simulation and generalized semi-Markov processes. Output analysis (autoregressive, regenerative, spectral, and stationary times series methods). Variance reduction techniques (antithetic variables, common random numbers, control variables, discrete-time, conversion, importance sampling). Stochastic optimization (likelihood ratio method, perturbation analysis, stochastic approximation). Simulation in a parallel environment. Prerequisite: MS&E 221 or equivalent.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Programs

MS&E323 is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )