Data Science for Geoscience

Download as PDF

Course Description

Overview of some of the most important data science methods (statistics, machine learning & computer vision) relevant for geological sciences, as well as other fields in the Earth Sciences. Areas covered are: extreme value statistics for predicting rare events; compositional data analysis for geochemistry; multivariate analysis for designing data & computer experiments; probabilistic aggregation of evidence for spatial mapping; functional data analysis for multivariate environmental datasets, spatial regression and modeling spatial uncertainty with covariate information (geostatistics). Identification & learning of geo-objects with computer vision. Focus on practicality rather than theory. Matlab exercises on realistic data problems.

Cross Listed Courses

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Discussion

Enrollment Optional?

Yes

Course Component

Lecture

Enrollment Optional?

No

Programs

GEOLSCI240 is a completion requirement for: