Modern Markov Chains
Download as PDF
Course Description
Tools for understanding Markov chains as they arise in applications. Random walk on graphs, reversible Markov chains, Metropolis algorithm, Gibbs sampler, hybrid Monte Carlo, auxiliary variables, hit and run, Swedson-Wong algorithms, geometric theory, Poincare-Nash-Cheeger-Log-Sobolov inequalities. Comparison techniques, coupling, stationary times, Harris recurrence, central limit theorems, and large deviations.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Programs
STATS318
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )