Introduction to Atomic Processes
Download as PDF
Course Description
Atomic spectroscopy, matrix elements using the Coulomb approximation, summary of Racah algebra, oscillator and line strengths, Einstein A coefficients. Radiative processes, Hamiltonian for two- and three-state systems, single- and multi-photon processes, linear and nonlinear susceptibilities, density matrix, brightness, detailed balance, and electromagnetically induced transparency. Inelastic collisions in the impact approximation, interaction potentials, Landau-Zener formulation. Continuum processes, Saha equilibrium, autoionization, and recombination.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No