Continuous Mathematical Methods with an Emphasis on Machine Learning
Download as PDF
Course Description
A survey of numerical approaches to the continuous mathematics used throughout computer science with an emphasis on machine and deep learning. Although motivated from the standpoint of machine learning, the course will focus on the underlying mathematical methods including computational linear algebra and optimization, as well as special topics such as automatic differentiation via backward propagation, momentum methods from ordinary differential equations, CNNs, RNNs, etc. Written homework assignments and (straightforward) quizzes focus on various concepts; additionally, students can opt in to a series of programming assignments geared towards neural network creation, training, and inference. (Replaces CS205A, and satisfies all similar requirements.) Prerequisites: Math 51; Math104 or MATH113 or equivalent or comfort with the associated material.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Discussion
Enrollment Optional?
Yes
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Courses
CS205L
is a
completion requirement
for:
Programs
CS205L
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )