Dynamic Programming and Stochastic Control

Download as PDF

Course Description

Markov population decision chains in discrete and continuous time. Risk posture. Present value and Cesaro overtaking optimality. Optimal stopping. Successive approximation, policy improvement, and linear programming methods. Team decisions and stochastic programs; quadratic costs and certainty equivalents. Maximum principle. Controlled diffusions. Examples from inventory, overbooking, options, investment, queues, reliability, quality, capacity, transportation. MATLAB. Prerequisites: MATH 113, 115; Markov chains; linear programming.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Does this course satisfy the University Language Requirement?

No

Programs

MS&E351 is a completion requirement for: