Optimization Algorithms

Download as PDF

Course Description

Fundamental theory for solving continuous optimization problems with provable efficiency guarantees. Coverage of both canonical optimization methods and techniques, e.g. gradient descent, mirror descent, stochastic methods, acceleration, higher-order methods, etc. and canonical optimization problems, critical point computation for non-convex functions, smooth-convex function minimization, regression, linear programming, etc. Focus on provable rates for solving broad classes of prevalent problems including both classic problems and those motivated by large-scale computational concerns. Discussion of computational ramifications, fundamental information-theoretic limits, and problem structure. Prerequisite: linear algebra, multivariable calculus, probability, and proofs.

Cross Listed Courses

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Does this course satisfy the University Language Requirement?

No

Programs

MS&E312 is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )