Applied Quantum Mechanics I
Download as PDF
Course Description
Emphasis is on applications in modern devices and systems. Topics include: Schrödinger's equation, eigenfunctions and eigenvalues, solutions of simple problems including quantum wells and tunneling, quantum harmonic oscillator, coherent states, operator approach to quantum mechanics, Dirac notation, angular momentum, hydrogen atom, calculation techniques including matrix diagonalization, perturbation theory, variational method, and time-dependent perturbation theory with applications to optical absorption, nonlinear optical coefficients, and Fermi's golden rule. Prerequisites: MATH 52 and 53, one of EE 65, ENGR 65, PHYSICS 71 (formerly PHYSICS 65), PHYSICS 70.
Cross Listed Courses
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Courses
EE222
is a
prerequisite
for:
Programs
EE222
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )